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A revision of coupled mode theory
for irregular acoustic waveguides

RONALD F. PANNATONI

Franklin, North Carolina, USA

August 8, 1988

1. INTRODUCTION

This note concerns new eigenfunction expansions for the fields in an
irregular acoustic waveguide. The expansions are associated with a non-
selfadjoint eigenvalue problem that has the eigenvalue in some of the
boundary conditions. The waveguide consists of two layers of fluid that
are separated by a frictionless free interface. The field expansions con-
verge uniformly on both sides of the interface even if the fluid density is
discontinuous at the interface.

We use the eigenfunction expansions to convert the reduced wave
equation and the conditions at the boundaries of the waveguide into
a system of first-order, ordinary differential equations. These coupling
equations are similar to Shevchenko's equations for coupling between
local modes in the waveguide [Sov. Phys. Acoust. 7(1962) pp. 392-397,
eqs. (16-18)].

The eigenvalue problem and the field expansions are described in the
next section. The coupling equations are stated in the last section.

2. THE EIGENFUNCTION EXPANSIONS

A. Notation and assumptions. The discussion in this note is lim-
ited to two-dimensional problems. The real variables z and z denote,
respectively, the coordinates of horizontal and vertical position in the
waveguide. The following notation is used for the indicated limits and
jump discontinuities of an arbitrary function F(z, z):

(1) F(z, z + 0) = Jim F(z, z + c),
t-0
c>O

(2) F(z, z -O) = lim F(z, z -e),
C-0
e> O

(3) jump[F] = F(x, z + 0) - F(z, z - 0).
(a,,)



Surfacez=O (p=O)

Upward normal nl ' [H(x), 1]

i O
Interface z = -H(x) (p and pT- continuous)

p'9 n

Bottom z -L (p =0)

Fig. 1. Geometry of the waveguide and conditions at the boundaries.

A representative section of the waveguide is sketched in Figure 1.
The surface boundary coincides with the horizontal line z = 0, and
the bottom boundary coincides with the horizontal line z = -L. The
interface between layers in the waveguide is described by the curve z =
-HI(x). It is assumed that 0 < H(x) < L for all x and that the function
H(x) has a continuous second derivative.

The local sound speed c(z, z) is continuous in each layer, and the local
mass density p(x, z) is continuously differentiable in each layer. These
quantities may be discontinuous at the interface, but it is assumed that
each of the four limits c(x, -H(x) + 0) and p(x, -H(r) ± 0) exists and
is positive.

Sound in the waveguide is assumed to depend harmonically on time
with angular frequency w. The acoustic pressure at time t can be ex- i)
pressed as the real part of the product p(z, z) exp(-iwt), where the com-
plex pressure p(x, z) solves a reduced wave equation in two dimensions:
if-L<z< -H(x) or-H(x)<z<Othen

+ c(Z2,)3 X, Z) S(Z, Z).

2 1
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The forcing term S(x, z) in eq. (4) represents distributed sources of sound
inside the waveguide.

The acoustic pressure vanishes at the external boundaries of the wave-
guide, and it is continuous at the interface:

(5) p(x, -L)=O0,

(6) P(XO0) = 0,

(7) jump IP] = 0.
(z, -H(s))

TIhe fluid velocity associated with sound in the waveguide is propor-
tional to the acoustic pressure gradient. The components of velocity in
the horizontal and vertical directions can be expressed, respectively, as
the real parts of the products ts(x, z) exp(- iwt) and w(x, z) exp(-iwt),
where the complex velocity components u(x, z) and w(x, z) are

(8) U(X'Z) = I a

1 0
(9) ~x~z = ap(xz ) FAX, Z).

At the interface the component of fluid velocity normal to the interface is
continuous. This requirement can be expressed in terms of the complex
velocity components as

(10) jump (w + k(z)ts] = 0,
(z, -H(s))

where 11(x) = (d/dx)H(x).

B. The eigenvalue problem. At each position x the following equa-
tions determine countably infinite sets of eigenvalues k,,(x) and eigen-
functions 0.(z z):

(11)

P(Z" -Z) 0. (Z' z)) + -k.(.T2) 0.(z, z) ;- 0

if -L < z < -H(x) or -H(z) < z < 0,

3



(12) L) = 0,

(13) 0) =0,

(14) jump =0,

(, - H(Z)) O

(15) jumpi) ! 2.~ + H (x) ik. (z)rk0)

The eigenfunctions are assumed to be normalized in such a way that the
mixed partial derivatives (02 /Ox 0z)O.(z,0) exist at the surface.

For every x all but finitely many eigenvalues k.(z) are purely imagi-
nary. The indices n of the eigenvalues run through the integers 0, ± 1, ±2,
... and they can be assigned to the eigenvalues in such a way that for
some integer N(x) the following statements are true:

(a) if InI > N(x) then k.(x) is imaginary and Ik.(-)l = O(InI);
(b) if n > N(x) then -ik.(x) is positive and increases in value as n

increases;
(c) if n < -N(z) then -i kn(x) is negative and decreases in value as

n decreases.

C. Acoustic field expansions. For each index n define

0
(16) a.(z)= J (k.(x)pG (z % z) .(x,) k,_, z)dz

L1
+ A-X", (X,lx)) jump on,

k,(x) P(X 1 (Z,-H(c)) [Paz

(17)

d.(x) = 2k,(x) 0 p .(Z,z) 2dz+- jump on Ia .
L P(X, Z) +i(Z) (,-H(s)) P z

The following expansions of the complex acoustic fields converge uni-
formly in the intervals -L < z < -H1(x) and -H(z) < z < 0:

(18S) p(z, z)= =~ a. (z)AX, ) 0 , 1.(Z , Z),

4



_ ! l I lI a,(z) • I

(19) u(x, z) 00 a.(z)

SW PX a,() E d. W

(20) w (ZZ) 0 i p( ,z)-
"

In particular, expansions (19) and (20) do not exhibit Gibb's phenom-
enon at z = -H(z) when the velocity components u(z, z) and w(x, z)
are discontinuous at the interface.

3. THE COUPLING EQUATIONS

The functions a.(z) that appear as coefficients in the acoustic field
expansions solve an infinite system of first-order, ordinary differential
equations. Each equation in this system takes the form

(2) d G,,(Z)
(21) na(z) = i k.(z) a,(z) - or) cVM() - is.a.(=A,,-o d.(x ,,(z) - ,.(,

(for n = 0,+1l,±2,...)

where the forcing term s.(z) is a moment of the source distribution:

(22) =..(-) = S(. z) I ..(z, z) dz.

It is possible to express the general coupling coefficient cm.(x) in
terms of several factors to which physical meaning can be attributed.
First, define the following quantities:

(23) L..(, z) = -z., (z~z)--i(z, z)
Ozz

+ (km(z)kn(z) - C(Z-Z)) 4.(Z,Z)4n(Z,Z),

(24)

, z)((,x z= (, z) - k ,,(z) k.(z) 0(,.(z z) 0.(z, z),

i (25)

N. ., (z, z) - zh(, z) zx, z) + k,. (z) k (z) 0. (z, z) 0 (, z)

+ 1z (0z z) ) tz(z) .(.).

+ 10.(x, Z) kn(z) 0.(z,

S 8m



(26) DII -[1(1)p]z "

Use these quantities to construct the following factors:

(27) A..(z) = ' ( ) 4 0.(z, z)q(xz)dz
fL FT Z)

(28 Im(X ) H,..() z) -Hd

(28) l,..() = H(z) jump [M,.p,
(z,-(z))

(29) J ()=/z)jump IM../pi,

where K.() = 1d2)() admn=0 1 2,.

The factor A,.,(x) is associated with lateral variations in material
properties of the fluids inside the waveguide. The factors I.(z), Jm.(z)
and K..(Z) are associated with conditions at the interface. These fac-
tors can differ from zero only if material properties of the fluids are
discontinuous at the interface, and if the slope or the curvature of the
interface does not vanish. The following theorem states the relation of
these factors to the general coupling coefficient c..(z).

THEOREM. If m On then

(31) c1,(x) = A.- A.(z) + I,..(z) + k--x) J..(Z)
k,. (x)- k.((z

++ k. .(Z)

However, if m = n then
1.1 1

(32) ,,(z)= - d,(z)+ --- J..()+ K ,(())k.(Z 2 k.(z)2

where 4.(z) = (dldz)d.(z).
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